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Abstract: In real-world scenarios, labeled data is often rare while unlabeled data can be obtained in huge quantities.
A current research direction in machine learning is the concept of semi-supervised support vector machines.
This type of binary classification approach aims at taking the additional information provided by unlabeled
patterns into account to reveal more information about the structure of the data and, hence, to yield models
with a better classification performance. However, generating these semi-supervised models requires solving
difficult optimization tasks. In this work, we present a simple but effective approach to address the induced
optimization task, which is based on a special instance of the quasi-Newton family of optimization schemes.
The resulting framework can be implemented easily using black box optimization engines and yields excel-
lent classification and runtime results on both artificial and real-world data sets that are superior (or at least
competitive) to the ones obtained by competing state-of-the-art methods.

1 INTRODUCTION

One of the most important machine learning tasks
is classification. If sufficient labeled training data is
given, there exists a variety of techniques like the
k-nearest neighbor-classifier or support vector ma-
chines (SVMs) (Hastie et al., 2009; Steinwart and
Christmann, 2008) to address such a task. However,
labeled data is often rare in real-world applications.
One active research field in machine learning is semi-
supervised learning (Chapelle et al., 2006b; Zhu and
Goldberg, 2009). In contrast to supervised methods,
the latter class of techniques takes both labeled and
unlabeled data into account to construct appropriate
models. A well-known concept in this field are semi-
supervised support vector machines (S3VMs) (Ben-
nett and Demiriz, 1999; Joachims, 1999; Vapnik and
Sterin, 1977) which depict the direct extension of sup-
port vector machines to semi-supervised learning sce-
narios. The key idea is depicted in Figure 1: The
aim of a standard support vector machine consists
in finding a hyperplane which separates both classes
well such that the margin is maximized. It is obvi-
ous that, in case of lack of labeled data, suboptimal
models might be obtained. Its semi-supervised vari-
ant aims at taking the unlabeled patterns into account

by searching for a partition (of these patterns into two
classes) such that a subsequent application of a (mod-
ified) support vector machine leads to the best result.

1.1 Related Work

The original problem formulation of semi-supervised
support vector machines was given by Vapnik and
Sterin (Vapnik and Sterin, 1977) under the name of
transductive support vector machines. From an opti-
mization point of view, the first approaches have been
proposed in the late nineties by Joachims (Joachims,
1999) and Bennet and Demiriz (Bennett and Demiriz,
1999). In general, there exist two lines of research,
namely (a) combinatorial and (b) continuous opti-
mization schemes. The naive brute-force approach
(which tests every possible partition), for instance, is
among the combinatorial schemes since it aims at di-
rectly finding a good assignment for the unknown la-
bels. The continuous optimization perspective (see
below) leads to a real-valued but non-convex task.
For both research directions, a variety of different
techniques has been proposed in recent years that are
based on semi-definite programming (Bie and Cris-
tianini, 2004; Xu and Schuurmans, 2005), the contin-
uation method (Chapelle et al., 2006a), deterministic



(a) SVM (b) S3VM
Figure 1: The concepts of support vector machines and their
extension to semi-supervised learning settings. Labeled pat-
terns are depicted as red squares and blue triangles and un-
labeled patterns as black points, respectively.

annealing (Sindhwani et al., 2006), the (constrained)
concave-convex procedure (Collobert et al., 2006;
Fung and Mangasarian, 2001; Zhao et al., 2008), and
other strategies (Adankon et al., 2009; Chapelle and
Zien, 2005; Mierswa, 2009; Sindhwani and Keerthi,
2006; Zhang et al., 2009). A related approach, also
based on a quasi-Newton framework, is proposed by
Reddy et al. (Reddy et al., 2010); however, they do
not consider differentiable surrogates and therefore
apply more complicated subgradient methods. Many
other approaches exist, and we refer to Chapelle et
al. (Chapelle et al., 2006b; Chapelle et al., 2008) and
Zhu et al. (Zhu and Goldberg, 2009) for comprehen-
sive surveys.

1.2 Notations

We use [m] to denote the set {1, . . . ,m}. Given a vec-
tor y ∈ Rn, we use yi to denote its i-th coordinate.
Further, the set of all m×n matrices with real coeffi-
cients is denoted by Rm×n. Given a matrix M∈Rm×n,
we denote the element in the i-th row and j-th col-
umn by [M]i, j. For two sets R = {i1, . . . , ir} ⊆ [m]

and S = {k1, . . . ,ks} ⊆ [n] of indices, we use MRS
to denote the matrix that contains only the rows and
columns of M that are indexed by R and S, respec-
tively. Moreover, we set MR[n] = MR.

2 CLASSIFICATION TASK

In supervised scenarios, we are given a training set
Tl = {(x1,y′1), . . . ,(xl ,y′l)} of labeled patterns xi be-
longing to a set X . The general goal of classifi-
cation approaches consists in building good models
which can predict valuable labels for unseen pat-
terns (Hastie et al., 2009). In semi-supervised learn-
ing frameworks, we are additionally given a set Tu =
{xl+1, . . . ,xl+u} ⊂ X of unlabeled training patterns.
Here, the goal is to improve the quality of the models
by taking both the labeled and the unlabeled part of
the data into account.

2.1 Support Vector Machines

The concept of support vector machines can be seen
as instance of regularization problems of the form

inf
f∈H

1
l

l

∑
i=1

L
(
y′i, f (xi)

)
+λ|| f ||2H , (1)

where λ > 0 is a fixed real number, L : Y ×R →
[0,∞) is a loss function and || f ||2H is the squared
norm in a so-called reproducing kernel Hilbert space
H ⊆ RX = { f : X → R} induced by a kernel func-
tion k : X×X→R (Steinwart and Christmann, 2008).
Here, the first term measures the loss caused by the
prediction function on the labeled training set and the
second one penalizes complex functions. Plugging in
different loss functions leads to various models; one
of the most popular choices is the hinge loss L(y, t) =
max(0,1− yt) which leads to the original definition
of support vector machines (Schölkopf et al., 2001;
Steinwart and Christmann, 2008), see Figure 2 (a).1

2.2 Semi-Supervised SVMs

Given the additional set Tu = {xl+1, . . . ,xl+u} ⊂ X
of unlabeled training patterns, semi-supervised sup-
port vector machines (Bennett and Demiriz, 1999;
Joachims, 1999; Vapnik and Sterin, 1977) aim at find-
ing an optimal prediction function for unseen data
based on both the labeled and the unlabeled part of the
data. More precisely, we search for a function f ∗ ∈H
and a labeling vector y∗ = (y∗1, . . . ,y

∗
u)

T ∈ {−1,+1}u

that are optimal with respect to

minimize
f∈H ,y∈{−1,+1}u

1
l

l

∑
i=1

L
(
y′i, f (xi)

)
(2)

+λ
′ 1
u

u

∑
i=1

L
(
yi, f (xl+i)

)
+λ|| f ||2H

where λ′,λ> 0 are user-defined parameters. Thus, the
main task consists in finding the optimal assignment
vector y for the unlabeled part; the combinatorial na-
ture of this task renders the optimization problem dif-
ficult to solve.

2.3 Continuous Optimization

As mentioned above, one can derive an equivalent
continuous optimization task: Using the hinge loss,

1The latter formulation does not include a bias term
b ∈R, which addresses translated data. For complex kernel
functions like the RBF kernel, adding this bias term does
not yield any known advantages, both from a theoretical as
well as practical point of view (Steinwart and Christmann,
2008). For the linear kernel, a regularized bias effect can be
obtained by adding a dimension of ones to the input data.
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Figure 2: The hinge loss L(y, t) = max(0,1− yt) and its
differentiable surrogate L(y, t) = 1

γ
log(1+ exp(γ(1− yt)))

with y =+1 and γ = 20 are shown in Figure (a). The effec-
tive hinge loss function L(t) = max(0,1− |t|) along with
its differentiable surrogate L(t) = exp(−st2) with s = 3 are
shown in Figure (b).

the optimal assignments for the vector y for a fixed
f ∈ H are given by yi = sgn( f (xi)) (Chapelle and
Zien, 2005).2 This yields

minimize
f∈H

1
l

l

∑
i=1

max
(
0,1− y′i f (xi)

)
(3)

+
λ′

u

u

∑
i=1

max
(
0,1−| f (xl+i)|

)
+λ|| f ||2H .

Note that the effective loss on the unlabeled pat-
terns penalizes predictions around the origin; thus, the
overall loss increases if the decision function f passes
through these patterns, see Figure 2 (b). By applying
the representer theorem (Schölkopf et al., 2001) for
latter task, it follows that an optimal solution f ∈ H
is of the form

f (·) =
l

∑
i=1

c′ik(xi, ·)+
u

∑
i=1

cik(xl+i, ·) (4)

with coefficients c = (c′1, . . . ,c
′
l ,c1, . . . ,cu)

T ∈ Rl+u.
Thus, one gets a continuous optimization task which
consists in finding the optimal coefficient vector c ∈
Rn with n = l+u. Note that the effective loss renders
the task non-convex and non-differentiable (since the
partial functions are non-differentiable).

3 QUASI-NEWTON SCHEME

We will consider a special instance of the quasi-
Newton optimization framework (Nocedal and
Wright, 2000). Besides the objective function itself,
methods belonging to this class of schemes only
require the gradient to be supplied.

2Note that the latter observation does only hold without
a balance constraint of the form∣∣∣∣∣1u u

∑
i=1

max(0,yi)−bc

∣∣∣∣∣< ε

for small ε > 0 and bc ∈ (0,1).

3.1 Differentiable Surrogates

Aiming at the application of the latter type of
schemes, we introduce the following differentiable
surrogate loss functions depicted in Figure 2. Here,
the differentiable replacement for the hinge loss is the
modified logistic loss (Zhang and Oles, 2001); the re-
placement for the effective loss for the unlabeled part
is a well-known candidate in this field (Chapelle and
Zien, 2005). Thus, the new overall surrogate objec-
tive is given by

Fλ′(c) =
1
l

l

∑
i=1

1
γ

log
(
1+ exp(γ(1− y′i f (xi)))

)
(5)

+
λ′

u

u

∑
i=1

exp(−3( f (xl+i))
2)

+λ

n

∑
i=1

n

∑
j=1

cic jk(xi,x j)

with f (·) = ∑
n
p=1 cpk(xp, ·) and using || f ||2H =

∑
n
i=1 ∑

n
j=1 cic jk(xi,x j) (Schölkopf et al., 2001). The

next lemma shows that both a function and a gradient
call can be performed efficiently.

Lemma 1. For a given c ∈Rn, one can compute both
the objective Fλ′(c) and the gradient ∇Fλ′(c) in O(n2)
time. The overall space consumption is O(n2).

Proof. The gradient is given by

∇Fλ′(c) = Ka+2λKc (6)

with a ∈ Rn and

ai =


−1

l
· exp(γ(1− f (xi)y′i))

1+ exp(γ(1− f (xi)y′i))
· y′i for i≤ l

−6λ′

u
· exp

(
−3( f (xi))

2) · f (xi) for i > l

.

Since all predictions f (x1), . . . , f (xn) can be com-
puted in O(n2) total time, one can compute the vector
a ∈ Rn and therefore the objective and the gradient in
O(n2). The space requirements are dominated by the
kernel matrix K ∈ Rn×n.

Note that numerical instabilities might occur when
evaluating exp(γ(1− f (xi)y′i)) for a function or a gra-
dient call. However, one can deal with these degen-
eracies in a safe way since log(1+ exp(t))− t → 0
and exp(t)

1+exp(t) − 1 → 0 converge rapidly for t → ∞.
Thus, each function and gradient evaluation can be
performed spending O(n2) time in a numerically sta-
ble manner.



Algorithm 1 QN-S3VM

Require: A labeled training set Tl =
{(x1,y′1), . . . ,(xl ,y′l)}, an unlabeled training
set Tu = {xl+1, . . . ,xn}, model parameters
λ′,λ, an initial (positive definite) inverse
Hessian approximation H0, and a sequence
0 < α1 < .. . < ατ.

1: Initialize c0 via supervised model.
2: for i = 1 to τ do
3: k = 0
4: while termination criteria not fulfilled do
5: Compute search direction pk via (7)
6: Update ck+1 = ck +βkpk
7: Update Hk+1 via (8)
8: k = k+1
9: end while

10: c0 = ck
11: end for

3.2 Quasi-Newton Framework

One of the most popular quasi-Newton schemes is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (No-
cedal and Wright, 2000) method, which we will now
sketch in the context of the given task. The overall
algorithmic framework is given in Algorithm 1: The
initial candidate solution is obtained via Equation (5)
while ignoring the (non-convex) unlabeled part (i. e.,
λ′ = 0). The influence of the unlabeled part is then in-
creased gradually via the sequence α1, . . . ,ατ.3 For
each parameter αi, a standard BFGS optimization
phase is performed, i.e., a sequence

ck+1 = ck +βkpk

of candidate solutions is generated, where pk is com-
puted via

pk =−Hk∇Fαi·λ′(ck) (7)

and where the step length βk is computed via line
search. The approximation Hk of the inverse Hessian
is then updated via

Hk+1 = (I−ρkskzT
k )Hk(I−ρkzksT

k )+ρksksT
k (8)

with zk = ∇Fαi·λ′(ck+1)−∇Fαi·λ′(ck), sk = ck+1− ck,
and ρk = (zT

k sk)
−1. New candidate solutions are gen-

erated as long as a convergence criterion is fulfilled
(e. g., as long as

∣∣∣∣∇Fαi·λ′(ck)
∣∣∣∣ > ε is fulfilled for a

small ε > 0 or as long as the number of iterations is

3This sequence can be seen as annealing sequence,
which is a common strategy (Joachims, 1999; Sindhwani
et al., 2006) to create easier problem instances at early
stages of the optimization process and to deform these in-
stances to the final task throughout the overall execution.

smaller than a used-defined number). As initial ap-
proximation, one usually resorts to H0 = γI for γ > 0;
an important property of the update scheme is that it
preserves the positive definiteness of the inverse Hes-
sian approximations (Nocedal and Wright, 2000).

3.3 Computational Speed-Ups

Two main computational bottlenecks arise for large-
scale settings: Firstly, the recurrent computation
of the objective and gradient needed by the quasi-
Newton framework is cumbersome. Secondly, the ap-
proximation of the Hessian’s inverse is, in general,
not sparse, which leads to quadratic-time operations
for the quasi-Newton framework itself (Nocedal and
Wright, 2000). In the following, we will show how to
alleviate these two problems.

3.3.1 Limited Memory Quasi-Newton

The non-sparse approximation of the Hessian’s in-
verse leads to a O(n2) time and to a O(n2) space con-
sumption. To reduce these computational costs, we
consider the L-BFGS methods (Nocedal and Wright,
2000), which depicts a memory and time saving vari-
ant of the original BFGS scheme. In a nutshell,
the idea consists in generating the approximations
H0,H1, . . . only based on the last m� n iterations and
to perform low-rank updates on the fly without storing
the involved matrices explicitly. This leads to an up-
date time of O(mn) for all operations related to the in-
termediate optimization phases (not counting the time
for function and gradient calls). As pointed out by
Nocedal and Wright, small values for m are usually
sufficient in practice (ranging from, e.g., m = 3 to
m = 50). Thus, assuming m to be a relatively small
constant, the operations needed by the optimization
engine essentially scale linearly with the number n of
optimization variables.

3.3.2 Low-Dimensional Search Space

It remains to show how to reduce the second bottle-
neck, i. e., the recurrent computation of both the ob-
jective and the gradient. For this sake, one can resort
to the subset of regressors method (Rifkin, 2002) to
reduce these computational costs, i. e., one approxi-
mates the original hypothesis (4) via

f̂ (·) =
r

∑
k=1

ĉ jk k(x jk , ·), (9)

where R = { j1, . . . , jr} ⊆ {1, . . . ,n} is a subset of in-
dices. Using this approximation scheme leads to a
slightly modified objective F̂λ′(ĉ) for ĉ ∈ Rr, where



the predictions f (x1), . . . , f (xn) are replaced by their
corresponding approximations f̂ (x1), . . . , f̂ (xn) in the
objective (5). Similar derivations as for the non-
approximation case show that the gradient ∇F̂λ′(ĉ) is
then given as

∇F̂λ′(ĉ) = KR a+2λKRR ĉ, (10)

where f has to be replaced by f̂ in the former defini-
tion of the vector a ∈Rn. It is easy to see that one can
compute both the new objective as well as its gradient
in an efficient kind of way:

Lemma 2. For ĉ ∈ Rr, the approximated objective
F̂λ′(ĉ) and the gradient ∇F̂λ′(ĉ) can be computed in
O(nr) time spending O(nr) space.

Proof. All predictions f̂ (x1), . . . , f̂ (xn) can be com-
puted in O(nr) time for a ĉ ∈ Rr. Given these pre-
dictions, one can compute the modified vector a ∈Rn

in O(n) time. The remaining operations for obtaining
the new objective F̂λ′(ĉ) and its gradient ∇F̂λ′(ĉ) can
be performed in O(nr+ r2) = O(nr) time. The space
consumption, dominated by KR, is O(nr).

Thus, in combination with the L-BFGS scheme de-
picted above, both the runtime as well as the space
consumption are reduced significantly. Here, the pa-
rameter r ∈ {1, . . . ,n} determines a trade-off between
the achieved speed-up and the accuracy of the approx-
imation. Another way to obtain considerable speed-
ups can be achieved for the special case of a linear
kernel, which we will describe next.

3.3.3 Linear Kernel and Sparse Data

Assume that we are given patterns in X = Rd and
let X ∈ Rn×d denote the data matrix containing the
training patterns as rows. In case of the linear kernel,
one can write the kernel matrix as K = XXT ∈ Rn×n

and can achieve substantial computational savings by
avoiding its explicit construction. This is the case, for
instance, if the data resides in a low-dimensional fea-
ture space (i. e., d� n) or due to the data matrix being
sparse, meaning that it contains only few nonzero en-
tries.

Lemma 3. For a linear kernel with patterns in X =
Rd , one can compute the objective Fλ′(c) and the gra-
dient ∇Fλ′(c) in O(nd) time using O(nd) space for a
given candidate solution c ∈ Rn.

Proof. Due to the linear kernel, one can compute

Kc = X(XTc) (11)

and thus all predictions f (x1), . . . , f (xn) in O(nd)
time. In the same manner, one can obtain cTKc and
Ka in O(nd) time (where the vector a ∈ Rn can be

computed in O(n) time given the predictions). Thus,
both the objective Fλ′(c) and the gradient ∇Fλ′(c) can
be obtained in O(nd) time. The space requirements
are bounded by the space needed to store the data ma-
trix X ∈ Rn×d , which is O(nd).

For high-dimensional but sparse data (i. e., if the ma-
trix X ∈ Rn×d contains only s� nd nonzero entries),
one can further reduce the computational cost in the
following kind of way:4

Lemma 4. For a linear kernel with patterns in X =
Rd and data matrix X ∈ Rn×d with s� nd nonzero
entries, one can compute the objective Fλ′(c) and the
gradient ∇Fλ′(c) in O(s) time using O(s) space for a
given candidate solution c ∈ Rn.

Proof. Without loss of generality, we assume that
s ≥ n− 1 holds. Similar to the derivations above,
one can compute Kc = X(XTc) and therefore the pre-
dictions f (x1), . . . , f (xn) as well as a ∈ Rn in O(s)
time using standard sparse matrix multiplication tech-
niques. In the same way, one can compute cTKc and
Ka in O(s) time. Hence, both the objective Fλ′(c)
and the gradient ∇Fλ′(c) can be obtained in O(s) time
spending O(s) space.

4 EXPERIMENTS

We will now describe the experimental setup and the
outcome of our experimental evaluation.

4.1 Experimental Setup

The runtime analysis are performed on a 3 GHZ Intel
CoreTM Duo PC running Ubuntu 10.04. We start by
providing details related to the experimental setup.

4.1.1 Implementation Details

Our implementation is based on Python, the
Scipy package (using the L-BFGS implementation
optimize.fmin l bfgs b (Byrd et al., 1995) with
m = 50), and the Numpy package. The function and
gradient evaluations are based on efficient matrix op-
erations provided by the Numpy package. As pointed
out above, a direct implementation of the latter ones
might suffer from numerical instabilities. To avoid
these instabilities, we make use of log(1+exp(t))≈ t
and exp(t)

1+exp(t) ≈ 1 for t ≥ 500. We denote the resulting

implementation by QN-S3VM.

4Note that the term s is sometimes used to denote the
average number of nonzero entries per pattern xi ∈ X in the
training set.



(a) Gaussian2C (b) Gaussian4C (c) Moons
Figure 3: Distribution of all artificial data sets (d = 2). The red squares and blue triangles depict the labeled part of the
data; the remaining black points correspond to the unlabeled part. Note that the two Gaussian data sets depict easy learning
instances for d = 2, even given only few labeled patterns. However, the noise present in the data render the induced tasks
difficult to approach in high dimensions (d = 500) in case only few labeled patterns are given (for supervised models).

4.1.2 Data Sets

We consider several artificial and real-world data sets,
where the first half of each data set is used as train-
ing and the second half as test set. To induce semi-
supervised scenarios, we split each training set into
a labeled and an unlabeled part and use different ra-
tios for the particular setting (where l, u, t denotes
the number of labeled, unlabeled, and test patterns,
respectively).

Artificial Data Sets: The first artificial data set
is composed of two Gaussian clusters; to gen-
erate it, we draw n/2 points from each of two
multivariate Gaussian distributions Xi ∼ N (mi, I),
where m1 = (−2.5,0.0, . . . ,0.0) ∈ Rd and m2 =
(+2.5,0.0, . . . ,0.0) ∈ Rd . The class label of a point
corresponds to the distribution it was drawn from,
see Figure 3 (a). If not noted otherwise, we use
n = 500 and d = 500 and denote the induced data set
by Gaussian2C. The second artificial data set aims
at generating a (possibly) misleading structure: Here,
we draw n/4 points from each of four multivariate
Gaussian distributions Xi ∼N (mi, I), where

m1 = (−2.5,−5.0,0.0, . . . ,0.0) ∈ Rd ,

m2 = (−2.5,+5.0,0.0, . . . ,0.0) ∈ Rd ,

m3 = (+2.5,−5.0,0.0, . . . ,0.0) ∈ Rd ,

m4 = (+2.5,+5.0,0.0, . . . ,0.0) ∈ Rd ,

see Figure 3 (b). The points drawn from the first two
distributions belong to the first class and the remain-
ing one to the second class. Again, we fix n = 500
and d = 500 and denote the corresponding data set
by Gaussian4C. Finally, we consider the well-known
two-dimensional Moons data set with n = 500 points,
see Figure 3 (c).

Real-World Data Sets: In addition to these arti-
ficial data sets, we consider several real-world data
sets including the COIL (Nene et al., 1996) and the

USPS (Hastie et al., 2009) data sets (consisting of both
the training and test set of the original data set). For
the COIL data set, we reduce the input dimensions
of each image from 128× 128 to 20× 20 and use
COIL(i,j) to denote the binary classification task in-
duced by the objects i and j out of the available 20
objects (using the ordering given in the data set). A
similar notation is used for the binary classification
tasks induced by the 10 classes present in the USPS
data set. For both the COIL and the USPS data set, we
rescaled all pixels such that the resulting values lie be-
tween 0.0 and 1.0. Further, we focus on those pairs of
objects/digits which are difficult to separate. Finally,
we consider the Newsgroup20 and the TEXT data set.
Let latter one is composed of the mac and mswindows
classes of the Newsgroup20 data set (Chapelle and
Zien, 2005).

4.1.3 Model Selection

In semi-supervised settings, model selection can be
unreliable due to the lack of labeled data and is
widely considered to be an open issue (Chapelle et al.,
2006b). Due to this model selection problem, we
consider two scenarios to select (non-fixed) parame-
ters. The first one is a non-realistic scenario where
we make use of the test set to evaluate the model
performance.5 The second one is a realistic scenario
where only the labels of the labeled part of the train-
ing set are used for model evaluation (via 5-fold cross-
validation). The reason for the non-realistic scenario
is the following: By making use of the test set (with a
large amount of labels), we can first evaluate the flex-
ibility of the model, i.e., we can first investigate if the
model is in principle capable of adapting to the inher-
ent structure of the data while ignoring the (possible)
problems caused by small validation sets.

In both scenarios, we first tune the non-fixed pa-
rameters via grid search and subsequently retrain
the final model on the training set with the best

5This setup is often considered in related evalua-
tions (Chapelle et al., 2006b).



(a) 14.9± 8.6 (b) 15.0± 9.1 (c) 16.0±10.0

(d) 5.0± 6.9 (e) 5.6± 7.4 (f) 6.7± 8.5
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Figure 4: The large red squares and blue triangles depict the labeled data; the small black dots the unlabeled data. Further,
the smaller red squares and blue triangles depict the partition of the unlabeled patterns computed by the semi-supervised
approach. Clearly, the LIBSVM implementation (top row) is not able to generate appropriate models due to the lack of labeled
data. Both the UniverSVM (middle row) and the QN-S3VM approach (bottom row) can successfully incorporate the unlabeled
data, whereas the performance gain is higher for the latter scheme. The average errors (with one standard deviation) on the
test sets over 10 random partitions are reported.

performing set of parameters. As similarity mea-
sures we consider a linear k(xi,x j) = 〈xi,x j〉 and
a radial basis function (RBF) kernel k(xi,x j) =

exp(−(2σ2)
−1∣∣∣∣xi−x j

∣∣∣∣2) with kernel width σ. To
select the kernel width σ for the RBF kernel, we con-
sider the set {0.01s,0.1s,1s,10s,100s} of possible as-
signments, where the value s is a rough estimate of
the maximum distance between any pair of samples.
6. The cost parameters λ and λ′ are tuned on a small
grid (λ,λ′) ∈ {2−10, . . . ,210}×{0.01,1,100} of pos-
sible parameters. Further, a short sequence of anneal-
ing steps is used (α1 = 0.01,α2 = 0.1,α3 = 1.0).

4.1.4 Competing Approaches

We use the LIBSVM (Chang and Lin, 2001) as
supervised competitor with C ∈ {2−10, . . . ,210}.
As semi-supervised competitor, we consider the
UniverSVM approach (Collobert et al., 2006). Again,
we perform grid search for tuning the involved param-
eters ((C,C∗) ∈ {2−10, . . . ,210} × { 0.01

u , 1.0
u , 100.0

u }).
The ratio between the two classes is provided to the
algorithm via the -w option. Except for the option

6s=
√

∑
d
k=1 (max([x1]k, . . . , [xn]k)−min([x1]k, . . . , [xn]k))

2

-S option (which we set to −0.3), the default val-
ues for the remaining parameters are used. We se-
lected the UniverSVM approach since it seems to be
the strongest semi-supervised competitor (with pub-
licly available code) both with respect to the running
time and classification performance. Further, the cor-
responding algorithmic framework is quite similar to
the one proposed in this work, i.e, surrogate loss func-
tions (ramp loss) along with a continuous local search
scheme (concave-convex procedure) are employed.7

4.2 Experimental Results

We will now depict the outcome of several experi-
ments demonstrating the potential of our approach.

7A detailed comparison of the UniverSVM approach
with other semi-supervised optimization schemes (like the
TSVM approach (Joachims, 1999)) has been conducted by
Collobert et al. (Collobert et al., 2006). Their results in-
dicate the superior performance of UniverSVM compared
to related methods. For the sake of exposition, we will
therefore focus on a comparison of our approach with
UniverSVM.
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Figure 5: The QN-S3VM approach can incorporate unlabeled data to improve the performance, see Figure (a). However,
sufficient unlabeled data is needed as well to reveal sufficient information about the structure of the data, see Figure (b).

4.2.1 Model Flexibility

The well-known Moons data set is said to be a dif-
ficult training instance for semi-supervised support
vector machines due to its non-linear structure. In
Figure 4, the results for the LIBSVM (top row), the
UniverSVM (middle row), and the QN-S3VM imple-
mentation (bottom row) are shown given slightly
varying distributions (using the RBF kernel). To se-
lect the model parameters, we make use of the test
set (non-realistic scenario). For all figures, the aver-
age test error (with one standard deviation) over 10
random partitions into labeled, unlabeled, and test
patterns, is given. It can be clearly seen that the
supervised approach is not able to generate reason-
able models. Further, the semi-supervised approaches
can successfully incorporate the additional informa-
tion provided by the unlabeled data, whereas the
QN-S3VM scheme seems to perform better on this par-
ticular data set instances.

4.2.2 Amount of Data

As motivated above, sufficient labeled data is essen-
tial for supervised learning approaches to yield rea-
sonable models. For semi-supervised approaches,
the amount of unlabeled data used for training is an
important issue as well. To analyze how much la-
beled and unlabeled data is needed for our approach,
we consider the Gaussian4C data set and vary the
amount of labeled and unlabeled data. For this ex-
periment, we make use of the non-realistic scenario
and resort to the LIBSVM implementation as baseline.
First, we vary the amount of labeled data from 5%
to 80% with respect to (the size of) the training set;
the remaining part the training set is used as unla-
beled data. In Figure 5 (a), the result of this exper-
iment is shown: Given more than 20% labeled data,
the semi-supervised approach performs clearly bet-
ter. Now, we fix the amount of labeled data to 20%
and vary the amount of unlabeled data from 5% to
80% with respect to (the size of) the training set, see
Figure 5 (b). Clearly, the semi-supervised approach

needs sufficient unlabeled data to yield appropriate
models in a reliable manner.

4.2.3 Classification Performance

We consider both the realistic and the non-realistic
scenario to evaluate the classification performance of
our approach. For each data set, we analyze the be-
havior of all competing approach given up to three
amounts of labeled, unlabeled, and test patterns. For
all data sets and for all competing approaches, a lin-
ear kernel is used. In Table 1, the test errors (and
one standard deviations) averaged over 10 random
partitions are given for both scenarios. It can be
clearly seen that, for the non-realistic scenario, the
semi-supervised approaches mostly yield better re-
sults compared to LIBSVM, even if only few labeled
patterns are given. Thus, they can successfully incor-
porate the additional information provided by the un-
labeled data. Due to lack of labeled data for model se-
lection, the results for the realistic scenario are worse
compared to the non-realistic one. Still, except for the
COIL data sets, the results for QN-S3VM are at least as
good as the ones of LIBSVM.

4.2.4 Computational Considerations

We will finally focus on the runtime behavior. To
simplify the setup, we fix the model parameters (i. e.,
λ = 1 and λ′ = 1) and use a linear kernel.

Medium-Scale Scenarios: To give an idea of the
runtime needed to obtain the results provided in Ta-
ble 1, we consider the Gaussian2C, the USPS(8,0)
and the sparse TEXT data set (with l = 25, 22, and
48 labeled patterns, respectively). Further, we vary
the amount of unlabeled patterns as shown in Fig-
ure 6; the average runtime over 10 runs is provided.
The plots indicate a comparable runtime behavior on
the non-sparse data sets. On the sparse text data set,
however, the QN-S3VM is considerably faster; note that
even with 1,000 unlabeled examples, the practical
runtime is less than 0.1 seconds per single execution.



Data Set l u t LIBSVM UniverSVM QN-S3VM

non-realistic realistic non-realistic realistic non-realistic realistic

Gaussian2C 25 225 250 13.0± 2.9 13.2± 2.8 1.0± 0.5 1.8± 0.9 0.5± 0.5 1.8± 0.6
Gaussian2C 50 200 250 5.8± 2.2 6.3± 2.4 1.0± 0.4 1.8± 0.8 0.5± 0.6 2.1± 1.0
Gaussian4C 25 225 250 17.4± 6.6 20.6±11.5 7.6±12.2 13.3±15.2 6.8±11.9 10.7±13.9
Gaussian4C 50 200 250 6.7± 1.5 6.9± 1.6 1.6± 0.8 2.5± 1.5 0.9± 0.6 2.5± 1.0

COIL(3,6) 14 101 29 13.4± 7.0 16.2± 7.2 2.8± 3.7 16.9±13.9 7.6± 9.1 13.1±12.5
COIL(3,6) 28 87 29 3.1± 3.3 3.8± 4.2 0.3± 1.0 5.2± 5.8 2.1± 3.5 3.1± 5.0
COIL(5,9) 14 101 29 13.4± 7.0 13.4± 7.8 6.9± 7.2 19.3±10.9 10.0± 8.5 17.9±12.0
COIL(5,9) 28 87 29 3.4± 4.1 4.5± 5.6 1.4± 3.2 7.2± 9.1 3.1± 5.0 3.8± 4.7
COIL(6,19) 14 101 29 12.1± 9.8 15.5±13.1 4.5± 8.2 21.0±12.0 10.3±10.9 13.4±11.8
COIL(6,19) 28 87 29 3.1± 3.3 3.4± 3.4 0.7± 2.1 4.5± 5.1 1.7± 3.2 3.4± 4.1
COIL(18,19) 14 101 29 6.9± 8.0 6.9± 8.0 1.0± 3.1 7.6± 8.8 10.0± 9.4 14.1± 9.9
COIL(18,19) 28 87 29 1.4± 4.1 1.4± 4.2 0.0± 0.0 5.2± 9.7 3.1± 5.4 5.9± 9.1

USPS(2,5) 16 806 823 9.4± 5.1 10.5± 4.7 3.2± 0.5 9.0± 5.6 3.1± 0.3 4.7± 1.2
USPS(2,5) 32 790 823 4.7± 0.7 5.4± 0.8 3.2± 0.5 5.7± 1.8 2.6± 0.6 4.0± 1.1
USPS(2,7) 17 843 861 4.6± 3.0 4.9± 2.9 1.5± 0.3 6.1± 5.3 1.2± 0.2 1.5± 0.2
USPS(2,7) 34 826 861 2.5± 1.0 2.8± 1.1 1.4± 0.2 3.4± 2.4 1.2± 0.1 1.5± 0.5
USPS(3,8) 15 751 766 12.0± 8.2 12.9± 8.3 4.8± 1.1 8.7± 3.9 6.5± 7.7 8.7±11.1
USPS(3,8) 30 736 766 6.6± 2.1 7.3± 2.1 4.0± 0.1 7.1± 1.8 3.7± 1.2 5.5± 2.8
USPS(8,0) 22 1,108 1,131 4.8± 1.7 5.0± 2.0 1.7± 0.7 3.2± 2.2 1.4± 0.6 2.4± 1.5
USPS(8,0) 45 1,085 1,131 2.7± 0.8 3.0± 0.9 1.3± 0.4 3.3± 1.8 1.4± 0.7 1.7± 0.6

MNIST(1,7) 20 480 500 3.5± 1.3 4.2± 1.6 2.6± 1.0 4.3± 2.8 1.8± 0.7 2.5± 0.9
MNIST(1,7) 50 450 500 2.3± 1.0 2.6± 1.0 2.2± 0.9 3.7± 2.5 1.8± 0.9 2.3± 1.1
MNIST(2,5) 20 480 500 9.3± 3.2 10.2± 3.1 3.4± 0.7 6.3± 3.9 4.0± 3.1 6.4± 3.7
MNIST(2,5) 50 450 500 4.7± 1.2 5.8± 1.7 3.4± 0.7 4.2± 1.6 2.4± 0.6 4.2± 1.3
MNIST(2,7) 20 480 500 6.7± 3.7 7.9± 4.4 2.9± 0.6 8.0± 4.7 2.9± 1.1 3.9± 1.3
MNIST(2,7) 50 450 500 4.2± 1.2 5.0± 1.5 2.5± 0.5 5.1± 1.6 2.2± 0.4 3.7± 2.1
MNIST(3,8) 20 480 500 15.2± 4.1 18.8±11.5 8.6± 3.3 16.1± 3.9 8.6± 5.1 12.7± 5.9
MNIST(3,8) 50 450 500 8.6± 2.5 9.0± 2.4 6.3± 2.0 9.5± 4.1 6.2± 2.2 7.5± 2.9

TEXT 48 924 974 23.5± 6.7 24.8± 9.6 6.5± 1.0 10.4± 2.6 8.2± 4.7 21.2±13.8
TEXT 97 876 973 11.4± 4.1 11.6± 4.1 5.8± 0.6 8.5± 4.2 5.3± 0.9 8.3± 2.5
TEXT 194 779 973 7.4± 1.3 7.6± 1.3 5.2± 0.8 6.5± 1.5 4.9± 0.8 5.4± 1.0
TEXT 389 584 973 4.8± 0.7 4.8± 0.7 4.2± 0.6 4.8± 0.6 4.0± 0.6 4.5± 0.6

Table 1: Classification performances of all competing approaches for both the non-realistic and the realistic scenario. The
best results with respect to the average test errors are highlighted.

Large-Scale Scenarios: To sketch the applicability
in large-scale settings, we consider the MNIST(1,7)
and vary the size of the training set from 2,000 to
10,000 patterns. Further, we make use of the kernel
matrix approximation scheme with r = 2,000 (and
randomly selected basis vectors). The runtime and
the needed function calls are given in Figure 7. As it
can be seen, the runtime is still moderate. Further, it
seems that a constant amount of function calls (being
independent of the size of the training set) is needed.

5 CONCLUSIONS

We proposed a quasi-Newton optimization frame-
work for the non-convex task induced by semi-
supervised support vector machines. It seems that
this type of optimization schemes is well suited for
the task at hand since it (a) can be implemented eas-
ily due to its conceptual simplicity and (b) admits di-
rect accelerations for sparse and non-sparse data. The
experiments indicate that the resulting approach can

successfully incorporate unlabeled data, even in real-
istic scenarios where the lack of labeled data compli-
cates the model selection phase.
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